| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpcl.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grpinvex.p |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
1 2 3
|
isgrp |
⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
| 5 |
4
|
simprbi |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 + 𝑥 ) = ( 𝑦 + 𝑋 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 + 𝑥 ) = 0 ↔ ( 𝑦 + 𝑋 ) = 0 ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |
| 9 |
8
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
| 10 |
5 9
|
sylan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |