Metamath Proof Explorer


Theorem grpinvf

Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses grpinvcl.b 𝐵 = ( Base ‘ 𝐺 )
grpinvcl.n 𝑁 = ( invg𝐺 )
Assertion grpinvf ( 𝐺 ∈ Grp → 𝑁 : 𝐵𝐵 )

Proof

Step Hyp Ref Expression
1 grpinvcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinvcl.n 𝑁 = ( invg𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 eqid ( 0g𝐺 ) = ( 0g𝐺 )
5 1 3 4 grpinveu ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵 ) → ∃! 𝑦𝐵 ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( 0g𝐺 ) )
6 riotacl ( ∃! 𝑦𝐵 ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( 0g𝐺 ) → ( 𝑦𝐵 ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( 0g𝐺 ) ) ∈ 𝐵 )
7 5 6 syl ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵 ) → ( 𝑦𝐵 ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( 0g𝐺 ) ) ∈ 𝐵 )
8 1 3 4 2 grpinvfval 𝑁 = ( 𝑥𝐵 ↦ ( 𝑦𝐵 ( 𝑦 ( +g𝐺 ) 𝑥 ) = ( 0g𝐺 ) ) )
9 7 8 fmptd ( 𝐺 ∈ Grp → 𝑁 : 𝐵𝐵 )