Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinvcl.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
1 3 4
|
grpinveu |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
6 |
|
riotacl |
⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ∈ 𝐵 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ∈ 𝐵 ) |
8 |
1 3 4 2
|
grpinvfval |
⊢ 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
9 |
7 8
|
fmptd |
⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |