Metamath Proof Explorer
		
		
		
		Description:  The group inverse is a one-to-one onto function.  (Contributed by NM, 22-Oct-2014)  (Proof shortened by Mario Carneiro, 14-Aug-2015)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						grpinvinv.b | 
						⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						grpinvinv.n | 
						⊢ 𝑁  =  ( invg ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						grpinv11.g | 
						⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
					
				
					 | 
					Assertion | 
					grpinvf1o | 
					⊢  ( 𝜑  →  𝑁 : 𝐵 –1-1-onto→ 𝐵 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpinvinv.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							grpinvinv.n | 
							⊢ 𝑁  =  ( invg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							grpinv11.g | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							grpinvf | 
							⊢ ( 𝐺  ∈  Grp  →  𝑁 : 𝐵 ⟶ 𝐵 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑁 : 𝐵 ⟶ 𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							ffnd | 
							⊢ ( 𝜑  →  𝑁  Fn  𝐵 )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							grpinvcnv | 
							⊢ ( 𝐺  ∈  Grp  →  ◡ 𝑁  =  𝑁 )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							syl | 
							⊢ ( 𝜑  →  ◡ 𝑁  =  𝑁 )  | 
						
						
							| 9 | 
							
								8
							 | 
							fneq1d | 
							⊢ ( 𝜑  →  ( ◡ 𝑁  Fn  𝐵  ↔  𝑁  Fn  𝐵 ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ◡ 𝑁  Fn  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							dff1o4 | 
							⊢ ( 𝑁 : 𝐵 –1-1-onto→ 𝐵  ↔  ( 𝑁  Fn  𝐵  ∧  ◡ 𝑁  Fn  𝐵 ) )  | 
						
						
							| 12 | 
							
								6 10 11
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  𝑁 : 𝐵 –1-1-onto→ 𝐵 )  |