| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinvval.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpinvval.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpinvval.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | grpinvval.n | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  𝐵 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( +g ‘ 𝑔 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( +g ‘ 𝑔 )  =   +  ) | 
						
							| 9 | 8 | oveqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 0g ‘ 𝑔 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( 0g ‘ 𝑔 )  =   0  ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 )  ↔  ( 𝑦  +  𝑥 )  =   0  ) ) | 
						
							| 13 | 6 12 | riotaeqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ℩ 𝑦  ∈  ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 ) )  =  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) ) | 
						
							| 14 | 6 13 | mpteq12dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥  ∈  ( Base ‘ 𝑔 )  ↦  ( ℩ 𝑦  ∈  ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 ) ) )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) ) ) | 
						
							| 15 |  | df-minusg | ⊢ invg  =  ( 𝑔  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑔 )  ↦  ( ℩ 𝑦  ∈  ( Base ‘ 𝑔 ) ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 )  =  ( 0g ‘ 𝑔 ) ) ) ) | 
						
							| 16 | 14 15 1 | mptfvmpt | ⊢ ( 𝐺  ∈  V  →  ( invg ‘ 𝐺 )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) ) ) | 
						
							| 17 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( invg ‘ 𝐺 )  =  ∅ ) | 
						
							| 18 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) )  =  ∅ | 
						
							| 19 | 17 18 | eqtr4di | ⊢ ( ¬  𝐺  ∈  V  →  ( invg ‘ 𝐺 )  =  ( 𝑥  ∈  ∅  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) ) ) | 
						
							| 20 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( Base ‘ 𝐺 )  =  ∅ ) | 
						
							| 21 | 1 20 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →  𝐵  =  ∅ ) | 
						
							| 22 | 21 | mpteq1d | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) )  =  ( 𝑥  ∈  ∅  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) ) ) | 
						
							| 23 | 19 22 | eqtr4d | ⊢ ( ¬  𝐺  ∈  V  →  ( invg ‘ 𝐺 )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) ) ) | 
						
							| 24 | 16 23 | pm2.61i | ⊢ ( invg ‘ 𝐺 )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) ) | 
						
							| 25 | 4 24 | eqtri | ⊢ 𝑁  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) ) |