Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvfvi.t |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
2 |
|
fvi |
⊢ ( 𝐺 ∈ V → ( I ‘ 𝐺 ) = 𝐺 ) |
3 |
2
|
fveq2d |
⊢ ( 𝐺 ∈ V → ( invg ‘ ( I ‘ 𝐺 ) ) = ( invg ‘ 𝐺 ) ) |
4 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
5 |
|
eqid |
⊢ ( invg ‘ ∅ ) = ( invg ‘ ∅ ) |
6 |
4 5
|
grpinvfn |
⊢ ( invg ‘ ∅ ) Fn ∅ |
7 |
|
fn0 |
⊢ ( ( invg ‘ ∅ ) Fn ∅ ↔ ( invg ‘ ∅ ) = ∅ ) |
8 |
6 7
|
mpbi |
⊢ ( invg ‘ ∅ ) = ∅ |
9 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( I ‘ 𝐺 ) = ∅ ) |
10 |
9
|
fveq2d |
⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ ( I ‘ 𝐺 ) ) = ( invg ‘ ∅ ) ) |
11 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ 𝐺 ) = ∅ ) |
12 |
8 10 11
|
3eqtr4a |
⊢ ( ¬ 𝐺 ∈ V → ( invg ‘ ( I ‘ 𝐺 ) ) = ( invg ‘ 𝐺 ) ) |
13 |
3 12
|
pm2.61i |
⊢ ( invg ‘ ( I ‘ 𝐺 ) ) = ( invg ‘ 𝐺 ) |
14 |
1 13
|
eqtr4i |
⊢ 𝑁 = ( invg ‘ ( I ‘ 𝐺 ) ) |