Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgpcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
tgpinv.5 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
Assertion | grpinvhmeo | ⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
2 | tgpinv.5 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
3 | 1 2 | tgpinv | ⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) |
4 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
6 | 5 2 | grpinvcnv | ⊢ ( 𝐺 ∈ Grp → ◡ 𝐼 = 𝐼 ) |
7 | 4 6 | syl | ⊢ ( 𝐺 ∈ TopGrp → ◡ 𝐼 = 𝐼 ) |
8 | 7 3 | eqeltrd | ⊢ ( 𝐺 ∈ TopGrp → ◡ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) |
9 | ishmeo | ⊢ ( 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) ↔ ( 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ∧ ◡ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) | |
10 | 3 8 9 | sylanbrc | ⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) ) |