Metamath Proof Explorer


Theorem grpinvhmeo

Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgpcn.j 𝐽 = ( TopOpen ‘ 𝐺 )
tgpinv.5 𝐼 = ( invg𝐺 )
Assertion grpinvhmeo ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) )

Proof

Step Hyp Ref Expression
1 tgpcn.j 𝐽 = ( TopOpen ‘ 𝐺 )
2 tgpinv.5 𝐼 = ( invg𝐺 )
3 1 2 tgpinv ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Cn 𝐽 ) )
4 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
5 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
6 5 2 grpinvcnv ( 𝐺 ∈ Grp → 𝐼 = 𝐼 )
7 4 6 syl ( 𝐺 ∈ TopGrp → 𝐼 = 𝐼 )
8 7 3 eqeltrd ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Cn 𝐽 ) )
9 ishmeo ( 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) ↔ ( 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) )
10 3 8 9 sylanbrc ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) )