Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinv.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpinv.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
grpinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
5 |
|
oveq2 |
⊢ ( ( 𝑁 ‘ 𝑋 ) = 𝑌 → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑋 + 𝑌 ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑋 + 𝑌 ) ) |
7 |
1 2 3 4
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |
10 |
6 9
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( 𝑋 + 𝑌 ) = 0 ) |
11 |
|
oveq2 |
⊢ ( ( 𝑋 + 𝑌 ) = 0 → ( ( 𝑁 ‘ 𝑋 ) + ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) + 0 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( ( 𝑁 ‘ 𝑋 ) + ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) + 0 ) ) |
13 |
1 2 3 4
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) + 𝑌 ) = ( 0 + 𝑌 ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) + 𝑌 ) = ( 0 + 𝑌 ) ) |
16 |
1 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
17 |
16
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
18 |
|
simprl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
19 |
|
simprr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
20 |
17 18 19
|
3jca |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
21 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) + 𝑌 ) = ( ( 𝑁 ‘ 𝑋 ) + ( 𝑋 + 𝑌 ) ) ) |
22 |
20 21
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) + 𝑌 ) = ( ( 𝑁 ‘ 𝑋 ) + ( 𝑋 + 𝑌 ) ) ) |
23 |
22
|
3impb |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) + 𝑌 ) = ( ( 𝑁 ‘ 𝑋 ) + ( 𝑋 + 𝑌 ) ) ) |
24 |
15 23
|
eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 + 𝑌 ) = ( ( 𝑁 ‘ 𝑋 ) + ( 𝑋 + 𝑌 ) ) ) |
25 |
1 2 3
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 0 + 𝑌 ) = 𝑌 ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 + 𝑌 ) = 𝑌 ) |
27 |
24 26
|
eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + ( 𝑋 + 𝑌 ) ) = 𝑌 ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( ( 𝑁 ‘ 𝑋 ) + ( 𝑋 + 𝑌 ) ) = 𝑌 ) |
29 |
1 2 3
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 0 ) = ( 𝑁 ‘ 𝑋 ) ) |
30 |
16 29
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 0 ) = ( 𝑁 ‘ 𝑋 ) ) |
31 |
30
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 0 ) = ( 𝑁 ‘ 𝑋 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( ( 𝑁 ‘ 𝑋 ) + 0 ) = ( 𝑁 ‘ 𝑋 ) ) |
33 |
12 28 32
|
3eqtr3rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( 𝑁 ‘ 𝑋 ) = 𝑌 ) |
34 |
10 33
|
impbida |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = 𝑌 ↔ ( 𝑋 + 𝑌 ) = 0 ) ) |