| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpinv.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grpinv.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
grpinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
| 5 |
|
oveq1 |
⊢ ( ( 𝑁 ‘ 𝑋 ) = 𝑌 → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = ( 𝑌 + 𝑋 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = ( 𝑌 + 𝑋 ) ) |
| 7 |
1 2 3 4
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 10 |
6 9
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 𝑌 ) → ( 𝑌 + 𝑋 ) = 0 ) |
| 11 |
1 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 |
1 2 3
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 13 |
11 12
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 14 |
13
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 0 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 + 𝑋 ) = 0 ) → ( 𝑁 ‘ 𝑋 ) = ( 0 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 17 |
|
oveq1 |
⊢ ( ( 𝑌 + 𝑋 ) = 0 → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 0 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 + 𝑋 ) = 0 ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 0 + ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 |
|
simprr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 20 |
|
simprl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 21 |
11
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 22 |
19 20 21
|
3jca |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 23 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 24 |
22 23
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 25 |
24
|
3impb |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 26 |
1 2 3 4
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |
| 27 |
26
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑌 + 0 ) ) |
| 28 |
27
|
3adant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) ) = ( 𝑌 + 0 ) ) |
| 29 |
1 2 3
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + 0 ) = 𝑌 ) |
| 30 |
29
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + 0 ) = 𝑌 ) |
| 31 |
25 28 30
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = 𝑌 ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 + 𝑋 ) = 0 ) → ( ( 𝑌 + 𝑋 ) + ( 𝑁 ‘ 𝑋 ) ) = 𝑌 ) |
| 33 |
16 18 32
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 + 𝑋 ) = 0 ) → ( 𝑁 ‘ 𝑋 ) = 𝑌 ) |
| 34 |
10 33
|
impbida |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = 𝑌 ↔ ( 𝑌 + 𝑋 ) = 0 ) ) |