| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpinvinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
| 3 |
1 2
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 6 |
1 4 5 2
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 7 |
3 6
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 8 |
1 4 5 2
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 9 |
7 8
|
eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 11 |
1 2
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 12 |
3 11
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 13 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 14 |
1 4
|
grplcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) ) → ( ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ↔ ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) ) |
| 15 |
10 12 13 3 14
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ) = ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ↔ ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) ) |
| 16 |
9 15
|
mpbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |