Metamath Proof Explorer


Theorem grpinvnz

Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015)

Ref Expression
Hypotheses grpinvnzcl.b 𝐵 = ( Base ‘ 𝐺 )
grpinvnzcl.z 0 = ( 0g𝐺 )
grpinvnzcl.n 𝑁 = ( invg𝐺 )
Assertion grpinvnz ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → ( 𝑁𝑋 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 grpinvnzcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinvnzcl.z 0 = ( 0g𝐺 )
3 grpinvnzcl.n 𝑁 = ( invg𝐺 )
4 fveq2 ( ( 𝑁𝑋 ) = 0 → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = ( 𝑁0 ) )
5 4 adantl ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ ( 𝑁𝑋 ) = 0 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = ( 𝑁0 ) )
6 1 3 grpinvinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
7 6 adantr ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ ( 𝑁𝑋 ) = 0 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
8 2 3 grpinvid ( 𝐺 ∈ Grp → ( 𝑁0 ) = 0 )
9 8 ad2antrr ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ ( 𝑁𝑋 ) = 0 ) → ( 𝑁0 ) = 0 )
10 5 7 9 3eqtr3d ( ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) ∧ ( 𝑁𝑋 ) = 0 ) → 𝑋 = 0 )
11 10 ex ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( ( 𝑁𝑋 ) = 0𝑋 = 0 ) )
12 11 necon3d ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋0 → ( 𝑁𝑋 ) ≠ 0 ) )
13 12 3impia ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑋0 ) → ( 𝑁𝑋 ) ≠ 0 )