Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvnzcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinvnzcl.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
grpinvnzcl.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
4 |
|
fveq2 |
⊢ ( ( 𝑁 ‘ 𝑋 ) = 0 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 0 ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 0 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 0 ) ) |
6 |
1 3
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 0 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
8 |
2 3
|
grpinvid |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 ‘ 0 ) = 0 ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 0 ) → ( 𝑁 ‘ 0 ) = 0 ) |
10 |
5 7 9
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ‘ 𝑋 ) = 0 ) → 𝑋 = 0 ) |
11 |
10
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = 0 → 𝑋 = 0 ) ) |
12 |
11
|
necon3d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≠ 0 → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) ) |
13 |
12
|
3impia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |