Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvnzcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinvnzcl.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
grpinvnzcl.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
4 |
|
eldifi |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋 ∈ 𝐵 ) |
5 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
7 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) |
8 |
1 2 3
|
grpinvnz |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |
9 |
8
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |
10 |
7 9
|
sylan2b |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁 ‘ 𝑋 ) ≠ 0 ) |
11 |
|
eldifsn |
⊢ ( ( 𝑁 ‘ 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ≠ 0 ) ) |
12 |
6 10 11
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑁 ‘ 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ) |