| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubcl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubcl.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 3 |  | grpinvsub.n | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
						
							| 4 | 1 3 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 7 | 1 6 3 | grpinvadd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  ( 𝑁 ‘ 𝑌 )  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) )  =  ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 8 | 5 7 | syld3an3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) )  =  ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 9 | 1 3 | grpinvinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 10 | 9 | 3adant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 12 | 8 11 | eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 13 | 1 6 3 2 | grpsubval | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) | 
						
							| 14 | 13 | 3adant1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑋  −  𝑌 ) )  =  ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) ) | 
						
							| 16 | 1 6 3 2 | grpsubval | ⊢ ( ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑌  −  𝑋 )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 17 | 16 | ancoms | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌  −  𝑋 )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 18 | 17 | 3adant1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌  −  𝑋 )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 19 | 12 15 18 | 3eqtr4d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑋  −  𝑌 ) )  =  ( 𝑌  −  𝑋 ) ) |