Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinvval.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpinvval.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
grpinvval.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 + 𝑥 ) = ( 𝑦 + 𝑋 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 + 𝑥 ) = 0 ↔ ( 𝑦 + 𝑋 ) = 0 ) ) |
7 |
6
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |
8 |
1 2 3 4
|
grpinvfval |
⊢ 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) ) |
9 |
|
riotaex |
⊢ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |