Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpsubcl.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
grpinvsub.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
4 |
|
grpinvval2.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
1 6 3 2
|
grpsubval |
⊢ ( ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 − 𝑋 ) = ( 0 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
8 |
5 7
|
sylan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 − 𝑋 ) = ( 0 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
9 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
10 |
1 6 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
12 |
8 11
|
eqtr2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( 0 − 𝑋 ) ) |