Metamath Proof Explorer


Theorem grpinvval2

Description: A df-neg -like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses grpsubcl.b 𝐵 = ( Base ‘ 𝐺 )
grpsubcl.m = ( -g𝐺 )
grpinvsub.n 𝑁 = ( invg𝐺 )
grpinvval2.z 0 = ( 0g𝐺 )
Assertion grpinvval2 ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) = ( 0 𝑋 ) )

Proof

Step Hyp Ref Expression
1 grpsubcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpsubcl.m = ( -g𝐺 )
3 grpinvsub.n 𝑁 = ( invg𝐺 )
4 grpinvval2.z 0 = ( 0g𝐺 )
5 1 4 grpidcl ( 𝐺 ∈ Grp → 0𝐵 )
6 eqid ( +g𝐺 ) = ( +g𝐺 )
7 1 6 3 2 grpsubval ( ( 0𝐵𝑋𝐵 ) → ( 0 𝑋 ) = ( 0 ( +g𝐺 ) ( 𝑁𝑋 ) ) )
8 5 7 sylan ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 0 𝑋 ) = ( 0 ( +g𝐺 ) ( 𝑁𝑋 ) ) )
9 1 3 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) ∈ 𝐵 )
10 1 6 4 grplid ( ( 𝐺 ∈ Grp ∧ ( 𝑁𝑋 ) ∈ 𝐵 ) → ( 0 ( +g𝐺 ) ( 𝑁𝑋 ) ) = ( 𝑁𝑋 ) )
11 9 10 syldan ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 0 ( +g𝐺 ) ( 𝑁𝑋 ) ) = ( 𝑁𝑋 ) )
12 8 11 eqtr2d ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) = ( 0 𝑋 ) )