Step |
Hyp |
Ref |
Expression |
1 |
|
grplact.1 |
⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) |
2 |
|
grplact.2 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
grplact.3 |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
grplactcnv.4 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) |
6 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( 𝐴 + 𝑎 ) ∈ 𝑋 ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝐴 + 𝑎 ) ∈ 𝑋 ) |
8 |
2 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
9 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ∈ 𝑋 ) |
10 |
9
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ∈ 𝑋 ) |
11 |
8 10
|
syldanl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ∈ 𝑋 ) |
12 |
|
eqcom |
⊢ ( 𝑎 = ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ↔ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = 𝑎 ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
14 |
2 3 13 4
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
16 |
15
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) + 𝑎 ) = ( ( 0g ‘ 𝐺 ) + 𝑎 ) ) |
17 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
18 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
19 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
20 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) |
21 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) + 𝑎 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) |
22 |
17 18 19 20 21
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) + 𝑎 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) |
23 |
2 3 13
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑎 ) = 𝑎 ) |
24 |
23
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑎 ) = 𝑎 ) |
25 |
16 22 24
|
3eqtr3rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) |
26 |
25
|
eqeq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = 𝑎 ↔ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) ) |
27 |
12 26
|
syl5bb |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 = ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ↔ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) ) |
28 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) |
29 |
7
|
adantrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐴 + 𝑎 ) ∈ 𝑋 ) |
30 |
2 3
|
grplcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 ∈ 𝑋 ∧ ( 𝐴 + 𝑎 ) ∈ 𝑋 ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ↔ 𝑏 = ( 𝐴 + 𝑎 ) ) ) |
31 |
17 28 29 18 30
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ↔ 𝑏 = ( 𝐴 + 𝑎 ) ) ) |
32 |
27 31
|
bitrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 = ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ↔ 𝑏 = ( 𝐴 + 𝑎 ) ) ) |
33 |
5 7 11 32
|
f1ocnv2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) ) |
34 |
1 2
|
grplactfval |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
36 |
35
|
f1oeq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ↔ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
37 |
35
|
cnveqd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( 𝐹 ‘ 𝐴 ) = ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
38 |
1 2
|
grplactfval |
⊢ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑎 ) ) ) |
39 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐼 ‘ 𝐴 ) + 𝑎 ) = ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) |
40 |
39
|
cbvmptv |
⊢ ( 𝑎 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑎 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) |
41 |
38 40
|
eqtrdi |
⊢ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) |
42 |
8 41
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) |
43 |
37 42
|
eqeq12d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) ↔ ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) ) |
44 |
36 43
|
anbi12d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ↔ ( ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) ) ) |
45 |
33 44
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |