Database BASIC ALGEBRAIC STRUCTURES Groups Definition and basic properties grplactf1o  
				
		 
		
			
		 
		Description:   The left group action of element A  of group G  maps the
       underlying set X  of G  one-to-one onto itself.  (Contributed by Paul Chapman , 18-Mar-2008)   (Proof shortened by Mario Carneiro , 14-Aug-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						grplact.1 ⊢  𝐹   =  ( 𝑔   ∈  𝑋   ↦  ( 𝑎   ∈  𝑋   ↦  ( 𝑔   +   𝑎  ) ) )  
					
						grplact.2 ⊢  𝑋   =  ( Base ‘ 𝐺  )  
					
						grplact.3 ⊢   +    =  ( +g  ‘ 𝐺  )  
				
					Assertion 
					grplactf1o ⊢   ( ( 𝐺   ∈  Grp  ∧  𝐴   ∈  𝑋  )  →  ( 𝐹  ‘ 𝐴  ) : 𝑋  –1-1 -onto → 𝑋  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							grplact.1 ⊢  𝐹   =  ( 𝑔   ∈  𝑋   ↦  ( 𝑎   ∈  𝑋   ↦  ( 𝑔   +   𝑎  ) ) )  
						
							2 
								
							 
							grplact.2 ⊢  𝑋   =  ( Base ‘ 𝐺  )  
						
							3 
								
							 
							grplact.3 ⊢   +    =  ( +g  ‘ 𝐺  )  
						
							4 
								
							 
							eqid ⊢  ( invg  ‘ 𝐺  )  =  ( invg  ‘ 𝐺  )  
						
							5 
								1  2  3  4 
							 
							grplactcnv ⊢  ( ( 𝐺   ∈  Grp  ∧  𝐴   ∈  𝑋  )  →  ( ( 𝐹  ‘ 𝐴  ) : 𝑋  –1-1 -onto → 𝑋   ∧  ◡ 𝐹  ‘ 𝐴  )  =  ( 𝐹  ‘ ( ( invg  ‘ 𝐺  ) ‘ 𝐴  ) ) ) )  
						
							6 
								5 
							 
							simpld ⊢  ( ( 𝐺   ∈  Grp  ∧  𝐴   ∈  𝑋  )  →  ( 𝐹  ‘ 𝐴  ) : 𝑋  –1-1 -onto → 𝑋  )