Description: The left group action of element A of group G . (Contributed by Paul Chapman, 18-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplact.1 | ⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) | |
| grplact.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| Assertion | grplactfval | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | ⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) | |
| 2 | grplact.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | oveq1 | ⊢ ( 𝑔 = 𝐴 → ( 𝑔 + 𝑎 ) = ( 𝐴 + 𝑎 ) ) | |
| 4 | 3 | mpteq2dv | ⊢ ( 𝑔 = 𝐴 → ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
| 5 | 4 1 2 | mptfvmpt | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |