Metamath Proof Explorer


Theorem grplactfval

Description: The left group action of element A of group G . (Contributed by Paul Chapman, 18-Mar-2008)

Ref Expression
Hypotheses grplact.1 𝐹 = ( 𝑔𝑋 ↦ ( 𝑎𝑋 ↦ ( 𝑔 + 𝑎 ) ) )
grplact.2 𝑋 = ( Base ‘ 𝐺 )
Assertion grplactfval ( 𝐴𝑋 → ( 𝐹𝐴 ) = ( 𝑎𝑋 ↦ ( 𝐴 + 𝑎 ) ) )

Proof

Step Hyp Ref Expression
1 grplact.1 𝐹 = ( 𝑔𝑋 ↦ ( 𝑎𝑋 ↦ ( 𝑔 + 𝑎 ) ) )
2 grplact.2 𝑋 = ( Base ‘ 𝐺 )
3 oveq1 ( 𝑔 = 𝐴 → ( 𝑔 + 𝑎 ) = ( 𝐴 + 𝑎 ) )
4 3 mpteq2dv ( 𝑔 = 𝐴 → ( 𝑎𝑋 ↦ ( 𝑔 + 𝑎 ) ) = ( 𝑎𝑋 ↦ ( 𝐴 + 𝑎 ) ) )
5 4 1 2 mptfvmpt ( 𝐴𝑋 → ( 𝐹𝐴 ) = ( 𝑎𝑋 ↦ ( 𝐴 + 𝑎 ) ) )