| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplact.1 | ⊢ 𝐹  =  ( 𝑔  ∈  𝑋  ↦  ( 𝑎  ∈  𝑋  ↦  ( 𝑔  +  𝑎 ) ) ) | 
						
							| 2 |  | grplact.2 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 | 1 2 | grplactfval | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑎  ∈  𝑋  ↦  ( 𝐴  +  𝑎 ) ) ) | 
						
							| 4 | 3 | fveq1d | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐵 )  =  ( ( 𝑎  ∈  𝑋  ↦  ( 𝐴  +  𝑎 ) ) ‘ 𝐵 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑎  =  𝐵  →  ( 𝐴  +  𝑎 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑎  ∈  𝑋  ↦  ( 𝐴  +  𝑎 ) )  =  ( 𝑎  ∈  𝑋  ↦  ( 𝐴  +  𝑎 ) ) | 
						
							| 7 |  | ovex | ⊢ ( 𝐴  +  𝐵 )  ∈  V | 
						
							| 8 | 5 6 7 | fvmpt | ⊢ ( 𝐵  ∈  𝑋  →  ( ( 𝑎  ∈  𝑋  ↦  ( 𝐴  +  𝑎 ) ) ‘ 𝐵 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 9 | 4 8 | sylan9eq | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐵 )  =  ( 𝐴  +  𝐵 ) ) |