Step |
Hyp |
Ref |
Expression |
1 |
|
grplact.1 |
⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) |
2 |
|
grplact.2 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
1 2
|
grplactfval |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
4 |
3
|
fveq1d |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ‘ 𝐵 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑎 = 𝐵 → ( 𝐴 + 𝑎 ) = ( 𝐴 + 𝐵 ) ) |
6 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) |
7 |
|
ovex |
⊢ ( 𝐴 + 𝐵 ) ∈ V |
8 |
5 6 7
|
fvmpt |
⊢ ( 𝐵 ∈ 𝑋 → ( ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ‘ 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
9 |
4 8
|
sylan9eq |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐴 + 𝐵 ) ) |