Step |
Hyp |
Ref |
Expression |
1 |
|
grplcan.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grplcan.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
oveq2 |
⊢ ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
4 |
3
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
7 |
1 2 5 6
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
8 |
7
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
9 |
8
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
10 |
1 6
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
11 |
10
|
adantrl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
12 |
|
simprr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
13 |
|
simprl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
14 |
11 12 13
|
3jca |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
15 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
16 |
14 15
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
17 |
16
|
anassrs |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
18 |
1 2 5
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
20 |
9 17 19
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
21 |
20
|
adantrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
23 |
7
|
adantrl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
24 |
23
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( 0g ‘ 𝐺 ) + 𝑌 ) ) |
25 |
10
|
adantrl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
26 |
|
simprr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
27 |
|
simprl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
28 |
25 26 27
|
3jca |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
29 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
30 |
28 29
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
31 |
1 2 5
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
32 |
31
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
33 |
24 30 32
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
35 |
34
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
36 |
4 22 35
|
3eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → 𝑋 = 𝑌 ) |
37 |
36
|
exp53 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑍 ∈ 𝐵 → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
38 |
37
|
3imp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → 𝑋 = 𝑌 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) |
40 |
38 39
|
impbid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |