| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grplcan.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grplcan.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
oveq2 |
⊢ ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 4 |
3
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 6 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 7 |
1 2 5 6
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 8 |
7
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
| 10 |
1 6
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 11 |
10
|
adantrl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 12 |
|
simprr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 13 |
|
simprl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 14 |
11 12 13
|
3jca |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 15 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 16 |
14 15
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 17 |
16
|
anassrs |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 18 |
1 2 5
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 20 |
9 17 19
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
| 21 |
20
|
adantrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
| 23 |
7
|
adantrl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( 0g ‘ 𝐺 ) + 𝑌 ) ) |
| 25 |
10
|
adantrl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 26 |
|
simprr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 27 |
|
simprl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 28 |
25 26 27
|
3jca |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 29 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 30 |
28 29
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 31 |
1 2 5
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 32 |
31
|
adantrr |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 33 |
24 30 32
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
| 36 |
4 22 35
|
3eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → 𝑋 = 𝑌 ) |
| 37 |
36
|
exp53 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑍 ∈ 𝐵 → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 38 |
37
|
3imp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) |
| 40 |
38 39
|
impbid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |