Metamath Proof Explorer


Theorem grplinv

Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grpinv.b 𝐵 = ( Base ‘ 𝐺 )
grpinv.p + = ( +g𝐺 )
grpinv.u 0 = ( 0g𝐺 )
grpinv.n 𝑁 = ( invg𝐺 )
Assertion grplinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( ( 𝑁𝑋 ) + 𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 grpinv.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinv.p + = ( +g𝐺 )
3 grpinv.u 0 = ( 0g𝐺 )
4 grpinv.n 𝑁 = ( invg𝐺 )
5 1 2 3 4 grpinvval ( 𝑋𝐵 → ( 𝑁𝑋 ) = ( 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 ) )
6 5 adantl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) = ( 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 ) )
7 1 2 3 grpinveu ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ∃! 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 )
8 riotacl2 ( ∃! 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 → ( 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 ) ∈ { 𝑦𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } )
9 7 8 syl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑦𝐵 ( 𝑦 + 𝑋 ) = 0 ) ∈ { 𝑦𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } )
10 6 9 eqeltrd ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) ∈ { 𝑦𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } )
11 oveq1 ( 𝑦 = ( 𝑁𝑋 ) → ( 𝑦 + 𝑋 ) = ( ( 𝑁𝑋 ) + 𝑋 ) )
12 11 eqeq1d ( 𝑦 = ( 𝑁𝑋 ) → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( ( 𝑁𝑋 ) + 𝑋 ) = 0 ) )
13 12 elrab ( ( 𝑁𝑋 ) ∈ { 𝑦𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ↔ ( ( 𝑁𝑋 ) ∈ 𝐵 ∧ ( ( 𝑁𝑋 ) + 𝑋 ) = 0 ) )
14 13 simprbi ( ( 𝑁𝑋 ) ∈ { 𝑦𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } → ( ( 𝑁𝑋 ) + 𝑋 ) = 0 )
15 10 14 syl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( ( 𝑁𝑋 ) + 𝑋 ) = 0 )