Metamath Proof Explorer
Description: The left inverse of a group element. Deduction associated with
grplinv . (Contributed by SN, 29-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
grplinvd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
grplinvd.p |
⊢ + = ( +g ‘ 𝐺 ) |
|
|
grplinvd.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
|
|
grplinvd.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
|
|
grplinvd.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
|
|
grplinvd.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
Assertion |
grplinvd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
grplinvd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grplinvd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grplinvd.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
grplinvd.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
5 |
|
grplinvd.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
6 |
|
grplinvd.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
1 2 3 4
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
8 |
5 6 7
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |