| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grplmulf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grplmulf1o.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grplmulf1o.n |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 + 𝑥 ) ) |
| 4 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 + 𝑥 ) ∈ 𝐵 ) |
| 5 |
4
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 + 𝑥 ) ∈ 𝐵 ) |
| 6 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 7 |
1 6
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
| 9 |
8
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
| 10 |
7 9
|
syldanl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
| 11 |
|
eqcom |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) |
| 12 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 13 |
10
|
adantrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
| 14 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 16 |
1 2
|
grplcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) ) |
| 17 |
12 13 14 15 16
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) ) |
| 18 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 19 |
1 2 18 6
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑦 ) ) |
| 22 |
7
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 23 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 24 |
1 2 12 15 22 23
|
grpassd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑦 ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) ) |
| 25 |
1 2 18
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
| 26 |
25
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
| 27 |
21 24 26
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = 𝑦 ) |
| 28 |
27
|
eqeq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
| 29 |
17 28
|
bitr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
| 30 |
11 29
|
bitrid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
| 31 |
3 5 10 30
|
f1o2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |