Step |
Hyp |
Ref |
Expression |
1 |
|
grplmulf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grplmulf1o.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grplmulf1o.n |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 + 𝑥 ) ) |
4 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 + 𝑥 ) ∈ 𝐵 ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 + 𝑥 ) ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
7 |
1 6
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
8 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
9 |
8
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
10 |
7 9
|
syldanl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
11 |
|
eqcom |
⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) |
12 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
13 |
10
|
adantrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
14 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
15 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
16 |
1 2
|
grplcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) ) |
17 |
12 13 14 15 16
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
19 |
1 2 18 6
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑦 ) ) |
22 |
7
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
23 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
24 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑦 ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) ) |
25 |
12 15 22 23 24
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑦 ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) ) |
26 |
1 2 18
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
27 |
26
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
28 |
21 25 27
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = 𝑦 ) |
29 |
28
|
eqeq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
30 |
17 29
|
bitr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
31 |
11 30
|
syl5bb |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
32 |
3 5 10 31
|
f1o2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |