| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplrinv.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grplrinv.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grplrinv.i | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 5 | 1 4 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑦  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  →  ( 𝑦  +  𝑥 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  +  𝑥 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑦  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  →  ( ( 𝑦  +  𝑥 )  =   0   ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  +  𝑥 )  =   0  ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑦  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  →  ( 𝑥  +  𝑦 )  =  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑦  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  →  ( ( 𝑥  +  𝑦 )  =   0   ↔  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) )  =   0  ) ) | 
						
							| 10 | 7 9 | anbi12d | ⊢ ( 𝑦  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  →  ( ( ( 𝑦  +  𝑥 )  =   0   ∧  ( 𝑥  +  𝑦 )  =   0  )  ↔  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  +  𝑥 )  =   0   ∧  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) )  =   0  ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) )  →  ( ( ( 𝑦  +  𝑥 )  =   0   ∧  ( 𝑥  +  𝑦 )  =   0  )  ↔  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  +  𝑥 )  =   0   ∧  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) )  =   0  ) ) ) | 
						
							| 12 | 1 2 3 4 | grplinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  +  𝑥 )  =   0  ) | 
						
							| 13 | 1 2 3 4 | grprinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) )  =   0  ) | 
						
							| 14 | 12 13 | jca | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  +  𝑥 )  =   0   ∧  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) )  =   0  ) ) | 
						
							| 15 | 5 11 14 | rspcedvd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =   0   ∧  ( 𝑥  +  𝑦 )  =   0  ) ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =   0   ∧  ( 𝑥  +  𝑦 )  =   0  ) ) |