Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpmgmd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| Assertion | grpmgmd | ⊢ ( 𝜑 → 𝐺 ∈ Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmgmd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 2 | 1 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 3 | mndmgm | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mgm ) |