Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpmgmd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
Assertion | grpmgmd | ⊢ ( 𝜑 → 𝐺 ∈ Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmgmd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
2 | 1 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
3 | mndmgm | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm ) | |
4 | 2 3 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mgm ) |