Metamath Proof Explorer


Theorem grpmgmd

Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025)

Ref Expression
Hypothesis grpmgmd.g ( 𝜑𝐺 ∈ Grp )
Assertion grpmgmd ( 𝜑𝐺 ∈ Mgm )

Proof

Step Hyp Ref Expression
1 grpmgmd.g ( 𝜑𝐺 ∈ Grp )
2 1 grpmndd ( 𝜑𝐺 ∈ Mnd )
3 mndmgm ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm )
4 2 3 syl ( 𝜑𝐺 ∈ Mgm )