Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
2 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
3 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
4 | 1 2 3 | isgrp | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐺 ) ∃ 𝑚 ∈ ( Base ‘ 𝐺 ) ( 𝑚 ( +g ‘ 𝐺 ) 𝑎 ) = ( 0g ‘ 𝐺 ) ) ) |
5 | 4 | simplbi | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |