Metamath Proof Explorer


Theorem grpmndd

Description: A group is a monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis grpmndd.1 ( 𝜑𝐺 ∈ Grp )
Assertion grpmndd ( 𝜑𝐺 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 grpmndd.1 ( 𝜑𝐺 ∈ Grp )
2 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
3 1 2 syl ( 𝜑𝐺 ∈ Mnd )