Description: A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grpn0 | ⊢ ( 𝐺 ∈ Grp → 𝐺 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 2 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → ( Base ‘ 𝐺 ) ≠ ∅ ) |
| 3 | fveq2 | ⊢ ( 𝐺 = ∅ → ( Base ‘ 𝐺 ) = ( Base ‘ ∅ ) ) | |
| 4 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 5 | 3 4 | eqtr4di | ⊢ ( 𝐺 = ∅ → ( Base ‘ 𝐺 ) = ∅ ) |
| 6 | 5 | necon3i | ⊢ ( ( Base ‘ 𝐺 ) ≠ ∅ → 𝐺 ≠ ∅ ) |
| 7 | 2 6 | syl | ⊢ ( 𝐺 ∈ Grp → 𝐺 ≠ ∅ ) |