| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
grpsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 5 |
1 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 6 |
5
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 7 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 8 |
6 7
|
syld3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 9 |
1 2 4 3
|
grpsubval |
⊢ ( ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) ) |
| 10 |
8 6 9
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) ) |
| 11 |
1 2 3
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑋 ) |
| 12 |
6 11
|
syld3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑋 ) |
| 13 |
1 2 4 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 14 |
13
|
3adant1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 − 𝑌 ) ) |
| 16 |
1 4
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑌 ) |
| 17 |
16
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑌 ) |
| 18 |
15 17
|
oveq12d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) = ( ( 𝑋 − 𝑌 ) + 𝑌 ) ) |
| 19 |
10 12 18
|
3eqtr3rd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 − 𝑌 ) + 𝑌 ) = 𝑋 ) |