| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 5 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  ∈  𝐵 ) | 
						
							| 6 | 5 | 3adant3r3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  −  𝑌 )  ∈  𝐵 ) | 
						
							| 7 |  | simpr2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 8 |  | simpr3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 9 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝑋  −  𝑌 )  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( ( 𝑋  −  𝑌 )  +  𝑌 )  −  𝑍 )  =  ( ( 𝑋  −  𝑌 )  +  ( 𝑌  −  𝑍 ) ) ) | 
						
							| 10 | 4 6 7 8 9 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( ( 𝑋  −  𝑌 )  +  𝑌 )  −  𝑍 )  =  ( ( 𝑋  −  𝑌 )  +  ( 𝑌  −  𝑍 ) ) ) | 
						
							| 11 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  −  𝑌 )  +  𝑌 )  =  𝑋 ) | 
						
							| 12 | 11 | 3adant3r3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑌 )  +  𝑌 )  =  𝑋 ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( ( 𝑋  −  𝑌 )  +  𝑌 )  −  𝑍 )  =  ( 𝑋  −  𝑍 ) ) | 
						
							| 14 | 10 13 | eqtr3d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑌 )  +  ( 𝑌  −  𝑍 ) )  =  ( 𝑋  −  𝑍 ) ) |