| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | grpnpncan0.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | simprl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | simprr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 8 | 1 2 3 | grpnpncan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑌 )  +  ( 𝑌  −  𝑋 ) )  =  ( 𝑋  −  𝑋 ) ) | 
						
							| 9 | 5 6 7 6 8 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑌 )  +  ( 𝑌  −  𝑋 ) )  =  ( 𝑋  −  𝑋 ) ) | 
						
							| 10 | 1 4 3 | grpsubid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  −  𝑋 )  =   0  ) | 
						
							| 11 | 10 | adantrr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  −  𝑋 )  =   0  ) | 
						
							| 12 | 9 11 | eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑌 )  +  ( 𝑌  −  𝑋 ) )  =   0  ) |