| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpasscan1.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpasscan1.2 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 3 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 4 |  | eqid | ⊢ ( GId ‘ 𝐺 )  =  ( GId ‘ 𝐺 ) | 
						
							| 5 | 1 4 2 | grporinv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 6 | 3 5 | syldan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 7 | 1 4 2 | grpolinv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 8 | 6 7 | eqtr4d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) )  =  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ) | 
						
							| 9 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) )  ∈  𝑋 ) | 
						
							| 10 | 3 9 | syldan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) )  ∈  𝑋 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 12 | 10 11 3 | 3jca | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) )  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 ) ) | 
						
							| 13 | 1 | grpolcan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) )  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 ) )  →  ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) )  =  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  ↔  ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) )  =  𝐴 ) ) | 
						
							| 14 | 12 13 | syldan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) ) )  =  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  ↔  ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) )  =  𝐴 ) ) | 
						
							| 15 | 8 14 | mpbid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝐴 ) )  =  𝐴 ) |