Step |
Hyp |
Ref |
Expression |
1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
1
|
isgrpo |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐺 ∈ GrpOp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) ) |
3 |
2
|
ibi |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑢 ) ) ) |
4 |
3
|
simp2d |
⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝑧 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝑧 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝐺 𝑧 ) = ( 𝐵 𝐺 𝑧 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 ( 𝑦 𝐺 𝑧 ) ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝑧 ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝑧 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝑧 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝑧 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 𝐺 𝑧 ) = ( 𝐵 𝐺 𝐶 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝐺 ( 𝐵 𝐺 𝑧 ) ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝑧 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝑧 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) ) |
18 |
8 13 17
|
rspc3v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) ) |
19 |
4 18
|
mpan9 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) ) |