Metamath Proof Explorer


Theorem grpocl

Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 𝑋 = ran 𝐺
Assertion grpocl ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 grpfo.1 𝑋 = ran 𝐺
2 1 grpofo ( 𝐺 ∈ GrpOp → 𝐺 : ( 𝑋 × 𝑋 ) –onto𝑋 )
3 fof ( 𝐺 : ( 𝑋 × 𝑋 ) –onto𝑋𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
4 2 3 syl ( 𝐺 ∈ GrpOp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
5 fovrn ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )
6 4 5 syl3an1 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 )