Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
Assertion | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfo.1 | ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | grpofo | ⊢ ( 𝐺 ∈ GrpOp → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |
3 | fof | ⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) | |
4 | 2 3 | syl | ⊢ ( 𝐺 ∈ GrpOp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
5 | fovrn | ⊢ ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) | |
6 | 4 5 | syl3an1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |