Metamath Proof Explorer


Theorem grpodivcl

Description: Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺 )
Assertion grpodivcl ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 grpdivf.1 𝑋 = ran 𝐺
2 grpdivf.3 𝐷 = ( /𝑔𝐺 )
3 1 2 grpodivf ( 𝐺 ∈ GrpOp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
4 fovrn ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ 𝑋𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 )
5 3 4 syl3an1 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 )