| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdivf.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpdivf.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐺  ∈  GrpOp ) | 
						
							| 4 |  | simpr1 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 5 | 1 2 | grpodivcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐶 )  ∈  𝑋 ) | 
						
							| 6 | 5 | 3adant3r1 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐷 𝐶 )  ∈  𝑋 ) | 
						
							| 7 |  | eqid | ⊢ ( inv ‘ 𝐺 )  =  ( inv ‘ 𝐺 ) | 
						
							| 8 | 1 7 2 | grpodivval | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  ( 𝐵 𝐷 𝐶 )  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) )  =  ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) ) ) | 
						
							| 9 | 3 4 6 8 | syl3anc | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) )  =  ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) ) ) | 
						
							| 10 | 1 7 2 | grpoinvdiv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) )  =  ( 𝐶 𝐷 𝐵 ) ) | 
						
							| 11 | 10 | 3adant3r1 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) )  =  ( 𝐶 𝐷 𝐵 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) )  =  ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) | 
						
							| 13 | 9 12 | eqtrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) )  =  ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |