Step |
Hyp |
Ref |
Expression |
1 |
|
grpdivf.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpdivf.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
|
simpl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ GrpOp ) |
4 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
5 |
1 2
|
grpodivcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐶 ) ∈ 𝑋 ) |
6 |
5
|
3adant3r1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) ∈ 𝑋 ) |
7 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
8 |
1 7 2
|
grpodivval |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐵 𝐷 𝐶 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) ) ) |
9 |
3 4 6 8
|
syl3anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) ) ) |
10 |
1 7 2
|
grpoinvdiv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) = ( 𝐶 𝐷 𝐵 ) ) |
11 |
10
|
3adant3r1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) = ( 𝐶 𝐷 𝐵 ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
13 |
9 12
|
eqtrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |