Step |
Hyp |
Ref |
Expression |
1 |
|
grpdivf.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpdivf.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
4 |
1 3
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
5 |
4
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
6 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ) |
7 |
5 6
|
syld3an3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ) |
8 |
7
|
3expib |
⊢ ( 𝐺 ∈ GrpOp → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ) ) |
9 |
8
|
ralrimivv |
⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
11 |
10
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
12 |
9 11
|
sylib |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
13 |
1 3 2
|
grpodivfval |
⊢ ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
14 |
13
|
feq1d |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
15 |
12 14
|
mpbird |
⊢ ( 𝐺 ∈ GrpOp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |