| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdivf.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpdivf.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( inv ‘ 𝐺 )  =  ( inv ‘ 𝐺 ) | 
						
							| 4 | 1 3 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑦  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 ) | 
						
							| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 ) | 
						
							| 6 | 1 | grpocl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑥  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 )  →  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) )  ∈  𝑋 ) | 
						
							| 7 | 5 6 | syld3an3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) )  ∈  𝑋 ) | 
						
							| 8 | 7 | 3expib | ⊢ ( 𝐺  ∈  GrpOp  →  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) )  ∈  𝑋 ) ) | 
						
							| 9 | 8 | ralrimivv | ⊢ ( 𝐺  ∈  GrpOp  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) )  ∈  𝑋 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) | 
						
							| 11 | 10 | fmpo | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) )  ∈  𝑋  ↔  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 12 | 9 11 | sylib | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 13 | 1 3 2 | grpodivfval | ⊢ ( 𝐺  ∈  GrpOp  →  𝐷  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) | 
						
							| 14 | 13 | feq1d | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ↔  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝑦 ) ) ) : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( 𝐺  ∈  GrpOp  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) |