| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpdiv.2 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 3 |  | grpdiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 4 |  | rnexg | ⊢ ( 𝐺  ∈  GrpOp  →  ran  𝐺  ∈  V ) | 
						
							| 5 | 1 4 | eqeltrid | ⊢ ( 𝐺  ∈  GrpOp  →  𝑋  ∈  V ) | 
						
							| 6 |  | mpoexga | ⊢ ( ( 𝑋  ∈  V  ∧  𝑋  ∈  V )  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) )  ∈  V ) | 
						
							| 7 | 5 5 6 | syl2anc | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) )  ∈  V ) | 
						
							| 8 |  | rneq | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  ran  𝐺 ) | 
						
							| 9 | 8 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  𝑋 ) | 
						
							| 10 |  | id | ⊢ ( 𝑔  =  𝐺  →  𝑔  =  𝐺 ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝑔  =  𝐺  →  𝑥  =  𝑥 ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( inv ‘ 𝑔 )  =  ( inv ‘ 𝐺 ) ) | 
						
							| 13 | 12 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( inv ‘ 𝑔 )  =  𝑁 ) | 
						
							| 14 | 13 | fveq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( inv ‘ 𝑔 ) ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) | 
						
							| 15 | 10 11 14 | oveq123d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) )  =  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 16 | 9 9 15 | mpoeq123dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥  ∈  ran  𝑔 ,  𝑦  ∈  ran  𝑔  ↦  ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 17 |  | df-gdiv | ⊢  /𝑔   =  ( 𝑔  ∈  GrpOp  ↦  ( 𝑥  ∈  ran  𝑔 ,  𝑦  ∈  ran  𝑔  ↦  ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 16 17 | fvmptg | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) )  ∈  V )  →  (  /𝑔  ‘ 𝐺 )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 19 | 7 18 | mpdan | ⊢ ( 𝐺  ∈  GrpOp  →  (  /𝑔  ‘ 𝐺 )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 20 | 3 19 | eqtrid | ⊢ ( 𝐺  ∈  GrpOp  →  𝐷  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |