| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpdiv.2 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 3 |  | grpdiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 4 | 1 2 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐵 )  ∈  𝑋 ) | 
						
							| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐵 )  ∈  𝑋 ) | 
						
							| 6 | 1 2 3 | grpodivval | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑁 ‘ 𝐵 )  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝑁 ‘ 𝐵 ) )  =  ( 𝐴 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) ) ) | 
						
							| 7 | 5 6 | syld3an3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝑁 ‘ 𝐵 ) )  =  ( 𝐴 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) ) ) | 
						
							| 8 | 1 2 | grpo2inv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 9 | 8 | 3adant2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) )  =  ( 𝐴 𝐺 𝐵 ) ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝑁 ‘ 𝐵 ) )  =  ( 𝐴 𝐺 𝐵 ) ) |