| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpdiv.2 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 3 |  | grpdiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | grpodivfval | ⊢ ( 𝐺  ∈  GrpOp  →  𝐷  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 5 | 4 | oveqd | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝐴 ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) 𝐵 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) )  =  ( 𝐴 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑁 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝐵 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐺 ( 𝑁 ‘ 𝑦 ) )  =  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 10 |  | ovex | ⊢ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) )  ∈  V | 
						
							| 11 | 6 8 9 10 | ovmpo | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) 𝐵 )  =  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 12 | 5 11 | sylan9eq | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 13 | 12 | 3impb | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |