Step |
Hyp |
Ref |
Expression |
1 |
|
grpdiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpdiv.2 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
3 |
|
grpdiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
4 |
1 2 3
|
grpodivfval |
⊢ ( 𝐺 ∈ GrpOp → 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) ) |
5 |
4
|
oveqd |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) 𝐵 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝐵 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 ( 𝑁 ‘ 𝑦 ) ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) |
10 |
|
ovex |
⊢ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ∈ V |
11 |
6 8 9 10
|
ovmpo |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( 𝑥 𝐺 ( 𝑁 ‘ 𝑦 ) ) ) 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
12 |
5 11
|
sylan9eq |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
13 |
12
|
3impb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |