Step |
Hyp |
Ref |
Expression |
1 |
|
grpeqdivid.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpeqdivid.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
|
grpeqdivid.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
4 |
1 3 2
|
grpodivid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 𝑈 ) |
5 |
4
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 𝑈 ) |
6 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐵 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 𝐷 𝐵 ) = 𝑈 ↔ ( 𝐵 𝐷 𝐵 ) = 𝑈 ) ) |
8 |
5 7
|
syl5ibrcom |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 𝐵 → ( 𝐴 𝐷 𝐵 ) = 𝑈 ) ) |
9 |
|
oveq1 |
⊢ ( ( 𝐴 𝐷 𝐵 ) = 𝑈 → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = ( 𝑈 𝐺 𝐵 ) ) |
10 |
1 3
|
grponpcan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 ) |
11 |
1 2
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = 𝐵 ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = 𝐵 ) |
13 |
10 12
|
eqeq12d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = ( 𝑈 𝐺 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
14 |
9 13
|
syl5ib |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 𝑈 → 𝐴 = 𝐵 ) ) |
15 |
8 14
|
impbid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 𝐷 𝐵 ) = 𝑈 ) ) |