Step |
Hyp |
Ref |
Expression |
1 |
|
grpoinveu.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpoinveu.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
1 2
|
grpoidcl |
⊢ ( 𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋 ) |
4 |
1
|
grporcan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑈 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) |
5 |
4
|
3exp2 |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝑈 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) ) ) ) |
6 |
3 5
|
mpid |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) ) ) |
7 |
6
|
pm2.43d |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) ) |
8 |
7
|
imp |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ 𝐴 = 𝑈 ) ) |
9 |
1 2
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐴 ) = 𝐴 ) |
10 |
9
|
eqeq2d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ↔ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) |
11 |
8 10
|
bitr3d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 = 𝑈 ↔ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) |