| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpoinveu.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpoinveu.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 | 1 2 | grpoidcl | ⊢ ( 𝐺  ∈  GrpOp  →  𝑈  ∈  𝑋 ) | 
						
							| 4 | 1 | grporcan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑈  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 )  ↔  𝐴  =  𝑈 ) ) | 
						
							| 5 | 4 | 3exp2 | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝐴  ∈  𝑋  →  ( 𝑈  ∈  𝑋  →  ( 𝐴  ∈  𝑋  →  ( ( 𝐴 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 )  ↔  𝐴  =  𝑈 ) ) ) ) ) | 
						
							| 6 | 3 5 | mpid | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  𝑋  →  ( ( 𝐴 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 )  ↔  𝐴  =  𝑈 ) ) ) ) | 
						
							| 7 | 6 | pm2.43d | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝐴  ∈  𝑋  →  ( ( 𝐴 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 )  ↔  𝐴  =  𝑈 ) ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 )  ↔  𝐴  =  𝑈 ) ) | 
						
							| 9 | 1 2 | grpolid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑈 𝐺 𝐴 )  =  𝐴 ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 )  ↔  ( 𝐴 𝐺 𝐴 )  =  𝐴 ) ) | 
						
							| 11 | 8 10 | bitr3d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  =  𝑈  ↔  ( 𝐴 𝐺 𝐴 )  =  𝐴 ) ) |