Metamath Proof Explorer


Theorem grpoidcl

Description: The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = ( GId ‘ 𝐺 )
Assertion grpoidcl ( 𝐺 ∈ GrpOp → 𝑈𝑋 )

Proof

Step Hyp Ref Expression
1 grpoidval.1 𝑋 = ran 𝐺
2 grpoidval.2 𝑈 = ( GId ‘ 𝐺 )
3 1 2 grpoidval ( 𝐺 ∈ GrpOp → 𝑈 = ( 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) )
4 1 grpoideu ( 𝐺 ∈ GrpOp → ∃! 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 )
5 riotacl ( ∃! 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ( 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∈ 𝑋 )
6 4 5 syl ( 𝐺 ∈ GrpOp → ( 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∈ 𝑋 )
7 3 6 eqeltrd ( 𝐺 ∈ GrpOp → 𝑈𝑋 )