Step |
Hyp |
Ref |
Expression |
1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
1
|
grpoidinv |
⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) |
3 |
|
simpll |
⊢ ( ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
5 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑢 𝐺 𝑧 ) = ( 𝑢 𝐺 𝑥 ) ) |
6 |
|
id |
⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
8 |
7
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
9 |
4 8
|
sylib |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
11 |
9
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) |
13 |
12
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑦 𝐺 𝑧 ) = ( 𝑦 𝐺 𝑤 ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ↔ ( 𝑦 𝐺 𝑤 ) = 𝑢 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝐺 𝑦 ) = ( 𝑤 𝐺 𝑦 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 𝐺 𝑦 ) = 𝑢 ↔ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) |
18 |
15 17
|
anbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ↔ ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) ) |
20 |
19
|
rspcva |
⊢ ( ( 𝑤 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) |
21 |
20
|
adantll |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) |
22 |
13 21
|
sylan2 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) |
23 |
1
|
grpoidinvlem4 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑤 ) = 𝑢 ∧ ( 𝑤 𝐺 𝑦 ) = 𝑢 ) ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
24 |
22 23
|
syldan |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
25 |
24
|
an32s |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
26 |
25
|
adantllr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
27 |
26
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → ( 𝑤 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑤 ) ) |
28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝑤 𝐺 𝑥 ) = ( 𝑤 𝐺 𝑢 ) ) |
29 |
|
id |
⊢ ( 𝑥 = 𝑢 → 𝑥 = 𝑢 ) |
30 |
28 29
|
eqeq12d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑤 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑤 𝐺 𝑢 ) = 𝑢 ) ) |
31 |
30
|
rspcva |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) → ( 𝑤 𝐺 𝑢 ) = 𝑢 ) |
32 |
31
|
adantll |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) → ( 𝑤 𝐺 𝑢 ) = 𝑢 ) |
33 |
32
|
ad2ant2rl |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → ( 𝑤 𝐺 𝑢 ) = 𝑢 ) |
34 |
33
|
adantllr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → ( 𝑤 𝐺 𝑢 ) = 𝑢 ) |
35 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑢 𝐺 𝑥 ) = ( 𝑢 𝐺 𝑤 ) ) |
36 |
|
id |
⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) |
37 |
35 36
|
eqeq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑤 ) = 𝑤 ) ) |
38 |
37
|
rspcva |
⊢ ( ( 𝑤 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) → ( 𝑢 𝐺 𝑤 ) = 𝑤 ) |
39 |
38
|
ad2ant2lr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → ( 𝑢 𝐺 𝑤 ) = 𝑤 ) |
40 |
27 34 39
|
3eqtr3d |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) → 𝑢 = 𝑤 ) |
41 |
40
|
ex |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) → 𝑢 = 𝑤 ) ) |
42 |
11 41
|
mpand |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) |
43 |
42
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) |
44 |
10 43
|
jca |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) |
45 |
44
|
ex |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) ) |
46 |
45
|
reximdva |
⊢ ( 𝐺 ∈ GrpOp → ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ( 𝑧 𝐺 𝑢 ) = 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑧 ) = 𝑢 ∧ ( 𝑧 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) ) |
47 |
2 46
|
mpd |
⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) |
48 |
|
oveq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 𝐺 𝑥 ) = ( 𝑤 𝐺 𝑥 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑢 = 𝑤 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) |
50 |
49
|
ralbidv |
⊢ ( 𝑢 = 𝑤 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 ) ) |
51 |
50
|
reu8 |
⊢ ( ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∃ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑥 → 𝑢 = 𝑤 ) ) ) |
52 |
47 51
|
sylibr |
⊢ ( 𝐺 ∈ GrpOp → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |