| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpfo.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | simpl | ⊢ ( ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 )  →  ( 𝑢 𝐺 𝑧 )  =  𝑧 ) | 
						
							| 3 | 2 | ralimi | ⊢ ( ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 )  →  ∀ 𝑧  ∈  𝑋 ( 𝑢 𝐺 𝑧 )  =  𝑧 ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑢 𝐺 𝑧 )  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑧  =  𝑥  →  𝑧  =  𝑥 ) | 
						
							| 6 | 4 5 | eqeq12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ↔  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 7 | 6 | rspccva | ⊢ ( ( ∀ 𝑧  ∈  𝑋 ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  𝑥  ∈  𝑋 )  →  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 8 | 3 7 | sylan | ⊢ ( ( ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 9 | 8 | adantll | ⊢ ( ( ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 10 | 9 | adantll | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  →  𝐺  ∈  GrpOp ) | 
						
							| 12 | 11 | anim1i | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  𝑥  ∈  𝑋 ) ) | 
						
							| 13 |  | id | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑢  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  𝑢  ∈  𝑋 ) ) | 
						
							| 14 | 13 | adantrr | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  →  ( 𝐺  ∈  GrpOp  ∧  𝑢  ∈  𝑋 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  𝑢  ∈  𝑋 ) ) | 
						
							| 16 | 3 | adantl | ⊢ ( ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) )  →  ∀ 𝑧  ∈  𝑋 ( 𝑢 𝐺 𝑧 )  =  𝑧 ) | 
						
							| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑧  ∈  𝑋 ( 𝑢 𝐺 𝑧 )  =  𝑧 ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 )  →  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) | 
						
							| 19 | 18 | ralimi | ⊢ ( ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 )  →  ∀ 𝑧  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) )  →  ∀ 𝑧  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑧  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) | 
						
							| 22 | 15 17 21 | jca32 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐺  ∈  GrpOp  ∧  𝑢  ∈  𝑋 )  ∧  ( ∀ 𝑧  ∈  𝑋 ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) ) | 
						
							| 23 |  | biid | ⊢ ( ∀ 𝑧  ∈  𝑋 ( 𝑢 𝐺 𝑧 )  =  𝑧  ↔  ∀ 𝑧  ∈  𝑋 ( 𝑢 𝐺 𝑧 )  =  𝑧 ) | 
						
							| 24 |  | biid | ⊢ ( ∀ 𝑧  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢  ↔  ∀ 𝑧  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) | 
						
							| 25 | 1 23 24 | grpoidinvlem3 | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑢  ∈  𝑋 )  ∧  ( ∀ 𝑧  ∈  𝑋 ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) )  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) | 
						
							| 26 | 22 25 | sylancom | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) | 
						
							| 27 | 1 | grpoidinvlem4 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑥  ∈  𝑋 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ( 𝑥 𝐺 𝑢 )  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 28 | 12 26 27 | syl2anc | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 𝐺 𝑢 )  =  ( 𝑢 𝐺 𝑥 ) ) | 
						
							| 29 | 28 10 | eqtrd | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) | 
						
							| 30 | 10 29 26 | jca31 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) ) | 
						
							| 31 | 30 | ralrimiva | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑢  ∈  𝑋  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) )  →  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) ) | 
						
							| 32 | 1 | grpolidinv | ⊢ ( 𝐺  ∈  GrpOp  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑢 𝐺 𝑧 )  =  𝑧  ∧  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑧 )  =  𝑢 ) ) | 
						
							| 33 | 31 32 | reximddv | ⊢ ( 𝐺  ∈  GrpOp  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) ) |