Step |
Hyp |
Ref |
Expression |
1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
simpl |
⊢ ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) → ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
3 |
2
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
4 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑢 𝐺 𝑧 ) = ( 𝑢 𝐺 𝑥 ) ) |
5 |
|
id |
⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
7 |
6
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
8 |
3 7
|
sylan |
⊢ ( ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
9 |
8
|
adantll |
⊢ ( ( ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
11 |
|
simpl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) → 𝐺 ∈ GrpOp ) |
12 |
11
|
anim1i |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ) |
13 |
|
id |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ) |
14 |
13
|
adantrr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) → ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ) |
16 |
3
|
adantl |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) → ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
17 |
16
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
18 |
|
simpr |
⊢ ( ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) |
19 |
18
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) |
20 |
19
|
adantl |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) |
22 |
15 17 21
|
jca32 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) |
23 |
|
biid |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ) |
24 |
|
biid |
⊢ ( ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ↔ ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) |
25 |
1 23 24
|
grpoidinvlem3 |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) ∧ ( ∀ 𝑧 ∈ 𝑋 ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) |
26 |
22 25
|
sylancom |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) |
27 |
1
|
grpoidinvlem4 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ( 𝑥 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑥 ) ) |
28 |
12 26 27
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑢 ) = ( 𝑢 𝐺 𝑥 ) ) |
29 |
28 10
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑢 ) = 𝑥 ) |
30 |
10 29 26
|
jca31 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |
31 |
30
|
ralrimiva |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑢 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |
32 |
1
|
grpolidinv |
⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑢 𝐺 𝑧 ) = 𝑧 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑧 ) = 𝑢 ) ) |
33 |
31 32
|
reximddv |
⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |