| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpoidval.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpoidval.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 | 1 2 | grpoidval | ⊢ ( 𝐺  ∈  GrpOp  →  𝑈  =  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 4 | 1 | grpoideu | ⊢ ( 𝐺  ∈  GrpOp  →  ∃! 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 5 |  | riotacl2 | ⊢ ( ∃! 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥  →  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  ∈  { 𝑢  ∈  𝑋  ∣  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 } ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐺  ∈  GrpOp  →  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  ∈  { 𝑢  ∈  𝑋  ∣  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 } ) | 
						
							| 7 | 3 6 | eqeltrd | ⊢ ( 𝐺  ∈  GrpOp  →  𝑈  ∈  { 𝑢  ∈  𝑋  ∣  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 } ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 9 | 8 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 10 | 9 | rgenw | ⊢ ∀ 𝑢  ∈  𝑋 ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐺  ∈  GrpOp  →  ∀ 𝑢  ∈  𝑋 ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 12 | 1 | grpoidinv | ⊢ ( 𝐺  ∈  GrpOp  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) ) | 
						
							| 13 | 11 12 4 | 3jca | ⊢ ( 𝐺  ∈  GrpOp  →  ( ∀ 𝑢  ∈  𝑋 ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  ∧  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  ∧  ∃! 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 14 |  | reupick2 | ⊢ ( ( ( ∀ 𝑢  ∈  𝑋 ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  ∧  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  ∧  ∃! 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  ∧  𝑢  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥  ↔  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) ) ) | 
						
							| 15 | 13 14 | sylan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑢  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥  ↔  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) ) ) | 
						
							| 16 | 15 | rabbidva | ⊢ ( 𝐺  ∈  GrpOp  →  { 𝑢  ∈  𝑋  ∣  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 }  =  { 𝑢  ∈  𝑋  ∣  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) } ) | 
						
							| 17 | 7 16 | eleqtrd | ⊢ ( 𝐺  ∈  GrpOp  →  𝑈  ∈  { 𝑢  ∈  𝑋  ∣  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) } ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢 𝐺 𝑥 )  =  ( 𝑈 𝐺 𝑥 ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ↔  ( 𝑈 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑥 𝐺 𝑢 )  =  ( 𝑥 𝐺 𝑈 ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑥 𝐺 𝑢 )  =  𝑥  ↔  ( 𝑥 𝐺 𝑈 )  =  𝑥 ) ) | 
						
							| 22 | 19 21 | anbi12d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ↔  ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 ) ) ) | 
						
							| 23 |  | eqeq2 | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ↔  ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) | 
						
							| 24 |  | eqeq2 | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑥 𝐺 𝑦 )  =  𝑢  ↔  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) ) | 
						
							| 25 | 23 24 | anbi12d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 )  ↔  ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 26 | 25 | rexbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 )  ↔  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 27 | 22 26 | anbi12d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  ↔  ( ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) ) ) ) | 
						
							| 28 | 27 | ralbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  ↔  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) ) ) ) | 
						
							| 29 | 28 | elrab | ⊢ ( 𝑈  ∈  { 𝑢  ∈  𝑋  ∣  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) }  ↔  ( 𝑈  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) ) ) ) | 
						
							| 30 | 17 29 | sylib | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝑈  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) ) ) ) | 
						
							| 31 | 30 | simprd | ⊢ ( 𝐺  ∈  GrpOp  →  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑈 𝐺 𝑥 )  =  ( 𝑈 𝐺 𝐴 ) ) | 
						
							| 33 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 34 | 32 33 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ↔  ( 𝑈 𝐺 𝐴 )  =  𝐴 ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐺 𝑈 )  =  ( 𝐴 𝐺 𝑈 ) ) | 
						
							| 36 | 35 33 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐺 𝑈 )  =  𝑥  ↔  ( 𝐴 𝐺 𝑈 )  =  𝐴 ) ) | 
						
							| 37 | 34 36 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 )  ↔  ( ( 𝑈 𝐺 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐺 𝑈 )  =  𝐴 ) ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦 𝐺 𝑥 )  =  ( 𝑦 𝐺 𝐴 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ↔  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐺 𝑦 )  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐺 𝑦 )  =  𝑈  ↔  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) | 
						
							| 42 | 39 41 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 )  ↔  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 43 | 42 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 )  ↔  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 44 | 37 43 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) )  ↔  ( ( ( 𝑈 𝐺 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐺 𝑈 )  =  𝐴 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) ) | 
						
							| 45 | 44 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑈 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑈 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑈 𝐺 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐺 𝑈 )  =  𝐴 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 46 | 31 45 | sylan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑈 𝐺 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐺 𝑈 )  =  𝐴 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) |