Step |
Hyp |
Ref |
Expression |
1 |
|
grpoidval.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpoidval.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
1 2
|
grpoidval |
⊢ ( 𝐺 ∈ GrpOp → 𝑈 = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
4 |
1
|
grpoideu |
⊢ ( 𝐺 ∈ GrpOp → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
5 |
|
riotacl2 |
⊢ ( ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 } ) |
6 |
4 5
|
syl |
⊢ ( 𝐺 ∈ GrpOp → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 } ) |
7 |
3 6
|
eqeltrd |
⊢ ( 𝐺 ∈ GrpOp → 𝑈 ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 } ) |
8 |
|
simpll |
⊢ ( ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
9 |
8
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
10 |
9
|
rgenw |
⊢ ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
11 |
10
|
a1i |
⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
12 |
1
|
grpoidinv |
⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |
13 |
11 12 4
|
3jca |
⊢ ( 𝐺 ∈ GrpOp → ( ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ∧ ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
14 |
|
reupick2 |
⊢ ( ( ( ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ∧ ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ 𝑢 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) ) |
15 |
13 14
|
sylan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) ) |
16 |
15
|
rabbidva |
⊢ ( 𝐺 ∈ GrpOp → { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 } = { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) } ) |
17 |
7 16
|
eleqtrd |
⊢ ( 𝐺 ∈ GrpOp → 𝑈 ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) } ) |
18 |
|
oveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 𝐺 𝑥 ) = ( 𝑈 𝐺 𝑥 ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑥 ) = 𝑥 ) ) |
20 |
|
oveq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑥 𝐺 𝑢 ) = ( 𝑥 𝐺 𝑈 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑥 𝐺 𝑢 ) = 𝑥 ↔ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
22 |
19 21
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) ) |
23 |
|
eqeq2 |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
24 |
|
eqeq2 |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑥 𝐺 𝑦 ) = 𝑢 ↔ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) |
25 |
23 24
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ↔ ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) |
27 |
22 26
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ↔ ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
28 |
27
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
29 |
28
|
elrab |
⊢ ( 𝑈 ∈ { 𝑢 ∈ 𝑋 ∣ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) } ↔ ( 𝑈 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
30 |
17 29
|
sylib |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑈 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
31 |
30
|
simprd |
⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 𝐴 ) ) |
33 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
34 |
32 33
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝐴 ) = 𝐴 ) ) |
35 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑈 ) = ( 𝐴 𝐺 𝑈 ) ) |
36 |
35 33
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑈 ) = 𝑥 ↔ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |
37 |
34 36
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) ) |
38 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
40 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ) |
41 |
40
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑦 ) = 𝑈 ↔ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |
42 |
39 41
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ↔ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
43 |
42
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
44 |
37 43
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ↔ ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) ) |
45 |
44
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑈 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
46 |
31 45
|
sylan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |