Step |
Hyp |
Ref |
Expression |
1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
id |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
3 |
2
|
3anidm23 |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
4 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) |
7 |
|
oveq1 |
⊢ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ) |
8 |
7
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ) |
9 |
|
oveq2 |
⊢ ( ( 𝐴 𝐺 𝐴 ) = 𝐴 → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = ( 𝑌 𝐺 𝐴 ) ) |
10 |
9
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = ( 𝑌 𝐺 𝐴 ) ) |
11 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 𝐴 ) = 𝑈 ) |
12 |
10 11
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = 𝑈 ) |
13 |
6 8 12
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑈 𝐺 𝐴 ) = 𝑈 ) |