| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpfo.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | id | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) | 
						
							| 3 | 2 | 3anidm23 | ⊢ ( ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) | 
						
							| 4 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 )  =  ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) | 
						
							| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 )  =  ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑌 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝐴 )  =  𝐴 ) )  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 )  =  ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( ( 𝑌 𝐺 𝐴 )  =  𝑈  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 ) ) | 
						
							| 8 | 7 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑌 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝐴 )  =  𝐴 ) )  →  ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( ( 𝐴 𝐺 𝐴 )  =  𝐴  →  ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) )  =  ( 𝑌 𝐺 𝐴 ) ) | 
						
							| 10 | 9 | ad2antll | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑌 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝐴 )  =  𝐴 ) )  →  ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) )  =  ( 𝑌 𝐺 𝐴 ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑌 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝐴 )  =  𝐴 ) )  →  ( 𝑌 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 12 | 10 11 | eqtrd | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑌 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝐴 )  =  𝐴 ) )  →  ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) )  =  𝑈 ) | 
						
							| 13 | 6 8 12 | 3eqtr3d | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑌  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑌 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝐴 )  =  𝐴 ) )  →  ( 𝑈 𝐺 𝐴 )  =  𝑈 ) |