Metamath Proof Explorer


Theorem grpoidinvlem1

Description: Lemma for grpoidinv . (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 𝑋 = ran 𝐺
Assertion grpoidinvlem1 ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑈 𝐺 𝐴 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 grpfo.1 𝑋 = ran 𝐺
2 id ( ( 𝑌𝑋𝐴𝑋𝐴𝑋 ) → ( 𝑌𝑋𝐴𝑋𝐴𝑋 ) )
3 2 3anidm23 ( ( 𝑌𝑋𝐴𝑋 ) → ( 𝑌𝑋𝐴𝑋𝐴𝑋 ) )
4 1 grpoass ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋𝐴𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) )
5 3 4 sylan2 ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) )
6 5 adantr ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) )
7 oveq1 ( ( 𝑌 𝐺 𝐴 ) = 𝑈 → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) )
8 7 ad2antrl ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) )
9 oveq2 ( ( 𝐴 𝐺 𝐴 ) = 𝐴 → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = ( 𝑌 𝐺 𝐴 ) )
10 9 ad2antll ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = ( 𝑌 𝐺 𝐴 ) )
11 simprl ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 𝐴 ) = 𝑈 )
12 10 11 eqtrd ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝐴 ) ) = 𝑈 )
13 6 8 12 3eqtr3d ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌𝑋𝐴𝑋 ) ) ∧ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝐴 ) = 𝐴 ) ) → ( 𝑈 𝐺 𝐴 ) = 𝑈 )