Step |
Hyp |
Ref |
Expression |
1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
simprr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
3 |
|
simprl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑌 ∈ 𝑋 ) |
4 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
5 |
4
|
3com23 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
6 |
5
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
7 |
2 3 6
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) ) |
8 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
9 |
7 8
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
11 |
|
oveq1 |
⊢ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑈 𝐺 𝑌 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑈 𝐺 𝑌 ) ) |
13 |
|
simpl |
⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 𝑌 ) = 𝑌 ) |
14 |
12 13
|
eqtr2d |
⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → 𝑌 = ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) ) |
15 |
|
id |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) |
16 |
15
|
3anidm13 |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) |
17 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
19 |
14 18
|
sylan9eqr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → 𝑌 = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
20 |
19
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) = 𝑌 ) |
21 |
20
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) = ( 𝐴 𝐺 𝑌 ) ) |
22 |
10 21
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 𝑌 ) ) |