| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
simprr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 3 |
|
simprl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑌 ∈ 𝑋 ) |
| 4 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
| 5 |
4
|
3com23 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
| 6 |
5
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) |
| 7 |
2 3 6
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) ) |
| 8 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑌 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
| 9 |
7 8
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) ) |
| 11 |
|
oveq1 |
⊢ ( ( 𝑌 𝐺 𝐴 ) = 𝑈 → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑈 𝐺 𝑌 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑈 𝐺 𝑌 ) ) |
| 13 |
|
simpl |
⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 𝑌 ) = 𝑌 ) |
| 14 |
12 13
|
eqtr2d |
⊢ ( ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) → 𝑌 = ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) ) |
| 15 |
|
id |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) |
| 16 |
15
|
3anidm13 |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) |
| 17 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
| 18 |
16 17
|
sylan2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑌 𝐺 𝐴 ) 𝐺 𝑌 ) = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
| 19 |
14 18
|
sylan9eqr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → 𝑌 = ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) |
| 20 |
19
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) = 𝑌 ) |
| 21 |
20
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( 𝐴 𝐺 ( 𝑌 𝐺 ( 𝐴 𝐺 𝑌 ) ) ) = ( 𝐴 𝐺 𝑌 ) ) |
| 22 |
10 21
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑌 ) = 𝑌 ∧ ( 𝑌 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑌 ) 𝐺 ( 𝐴 𝐺 𝑌 ) ) = ( 𝐴 𝐺 𝑌 ) ) |