| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpfo.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpidinvlem3.2 | ⊢ ( 𝜑  ↔  ∀ 𝑥  ∈  𝑋 ( 𝑈 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 3 |  | grpidinvlem3.3 | ⊢ ( 𝜓  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑧  ∈  𝑋 ( 𝑧 𝐺 𝑥 )  =  𝑈 ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧 𝐺 𝑥 )  =  ( 𝑦 𝐺 𝑥 ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧 𝐺 𝑥 )  =  𝑈  ↔  ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) | 
						
							| 6 | 5 | cbvrexvw | ⊢ ( ∃ 𝑧  ∈  𝑋 ( 𝑧 𝐺 𝑥 )  =  𝑈  ↔  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) | 
						
							| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑋 ∃ 𝑧  ∈  𝑋 ( 𝑧 𝐺 𝑥 )  =  𝑈  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) | 
						
							| 8 | 3 7 | bitri | ⊢ ( 𝜓  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦 𝐺 𝑥 )  =  ( 𝑦 𝐺 𝐴 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ↔  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈  ↔  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 12 | 11 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 13 | 8 12 | sylanb | ⊢ ( ( 𝜓  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 14 | 13 | adantll | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 15 | 14 | adantll | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 16 | 1 | grpocl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) | 
						
							| 17 | 16 | 3expa | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) | 
						
							| 18 | 17 | adantllr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) | 
						
							| 19 | 18 | adantllr | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) | 
						
							| 20 | 2 | biimpi | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ( 𝑈 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  →  ∀ 𝑥  ∈  𝑋 ( 𝑈 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ∀ 𝑥  ∈  𝑋 ( 𝑈 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 𝑥 )  =  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) ) | 
						
							| 24 |  | id | ⊢ ( 𝑥  =  ( 𝐴 𝐺 𝑦 )  →  𝑥  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 25 | 23 24 | eqeq12d | ⊢ ( 𝑥  =  ( 𝐴 𝐺 𝑦 )  →  ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ↔  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 ) ) ) | 
						
							| 26 | 25 | rspcva | ⊢ ( ( ( 𝐴 𝐺 𝑦 )  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( 𝑈 𝐺 𝑥 )  =  𝑥 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 27 | 19 22 26 | syl2anc | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 29 |  | pm3.22 | ⊢ ( ( ( 𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  ∧  𝐺  ∈  GrpOp )  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) ) | 
						
							| 30 | 29 | an31s | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) ) | 
						
							| 31 | 30 | adantllr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) ) | 
						
							| 32 | 31 | adantllr | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑈 𝐺 𝑥 )  =  ( 𝑈 𝐺 𝑦 ) ) | 
						
							| 35 |  | id | ⊢ ( 𝑥  =  𝑦  →  𝑥  =  𝑦 ) | 
						
							| 36 | 34 35 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑈 𝐺 𝑥 )  =  𝑥  ↔  ( 𝑈 𝐺 𝑦 )  =  𝑦 ) ) | 
						
							| 37 | 36 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑋 ( 𝑈 𝐺 𝑥 )  =  𝑥  ∧  𝑦  ∈  𝑋 )  →  ( 𝑈 𝐺 𝑦 )  =  𝑦 ) | 
						
							| 38 | 2 37 | sylanb | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑈 𝐺 𝑦 )  =  𝑦 ) | 
						
							| 39 | 38 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑈 𝐺 𝑦 )  =  𝑦 ) | 
						
							| 40 | 39 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑈 𝐺 𝑦 )  =  𝑦 ) | 
						
							| 41 | 40 | adantlll | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑈 𝐺 𝑦 )  =  𝑦 ) | 
						
							| 42 | 41 | anim1i | ⊢ ( ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  →  ( ( 𝑈 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 43 | 1 | grpoidinvlem2 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  ∧  ( ( 𝑈 𝐺 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) )  →  ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 44 | 33 42 43 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  →  ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 45 | 16 | 3expb | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) | 
						
							| 46 | 45 | ad2ant2rl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) )  →  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧 𝐺 𝑥 )  =  ( 𝑤 𝐺 𝑥 ) ) | 
						
							| 48 | 47 | eqeq1d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑧 𝐺 𝑥 )  =  𝑈  ↔  ( 𝑤 𝐺 𝑥 )  =  𝑈 ) ) | 
						
							| 49 | 48 | cbvrexvw | ⊢ ( ∃ 𝑧  ∈  𝑋 ( 𝑧 𝐺 𝑥 )  =  𝑈  ↔  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑥 )  =  𝑈 ) | 
						
							| 50 | 49 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑋 ∃ 𝑧  ∈  𝑋 ( 𝑧 𝐺 𝑥 )  =  𝑈  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑥 )  =  𝑈 ) | 
						
							| 51 | 3 50 | bitri | ⊢ ( 𝜓  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑥 )  =  𝑈 ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑤 𝐺 𝑥 )  =  ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) ) | 
						
							| 53 | 52 | eqeq1d | ⊢ ( 𝑥  =  ( 𝐴 𝐺 𝑦 )  →  ( ( 𝑤 𝐺 𝑥 )  =  𝑈  ↔  ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) | 
						
							| 54 | 53 | rexbidv | ⊢ ( 𝑥  =  ( 𝐴 𝐺 𝑦 )  →  ( ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑥 )  =  𝑈  ↔  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) | 
						
							| 55 | 54 | rspcva | ⊢ ( ( ( 𝐴 𝐺 𝑦 )  ∈  𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 𝑥 )  =  𝑈 )  →  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) | 
						
							| 56 | 51 55 | sylan2b | ⊢ ( ( ( 𝐴 𝐺 𝑦 )  ∈  𝑋  ∧  𝜓 )  →  ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) | 
						
							| 57 |  | anass | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑤  ∈  𝑋 )  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 )  ↔  ( 𝐺  ∈  GrpOp  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) ) ) | 
						
							| 58 | 57 | biimpi | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑤  ∈  𝑋 )  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) ) ) | 
						
							| 59 | 58 | an32s | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 )  →  ( 𝑤  ∈  𝑋  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) ) ) ) | 
						
							| 61 | 45 60 | syldan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑤  ∈  𝑋  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) ) ) ) | 
						
							| 62 | 61 | ad2ant2rl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) )  →  ( 𝑤  ∈  𝑋  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) ) ) ) | 
						
							| 63 | 62 | imp | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) )  ∧  𝑤  ∈  𝑋 )  →  ( 𝐺  ∈  GrpOp  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) ) ) | 
						
							| 64 | 1 | grpoidinvlem1 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑤  ∈  𝑋  ∧  ( 𝐴 𝐺 𝑦 )  ∈  𝑋 ) )  ∧  ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈  ∧  ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 ) ) )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) | 
						
							| 65 | 63 64 | sylan | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) )  ∧  𝑤  ∈  𝑋 )  ∧  ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈  ∧  ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 ) ) )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) | 
						
							| 66 | 65 | exp43 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) )  →  ( 𝑤  ∈  𝑋  →  ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) ) ) | 
						
							| 67 | 66 | rexlimdv | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) )  →  ( ∃ 𝑤  ∈  𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) ) | 
						
							| 68 | 56 67 | syl5 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) )  →  ( ( ( 𝐴 𝐺 𝑦 )  ∈  𝑋  ∧  𝜓 )  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) ) | 
						
							| 69 | 46 68 | mpand | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) )  →  ( 𝜓  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) ) | 
						
							| 70 | 69 | exp32 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  →  ( 𝜑  →  ( ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝜓  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) ) ) ) | 
						
							| 71 | 70 | com34 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  →  ( 𝜑  →  ( 𝜓  →  ( ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) ) ) ) | 
						
							| 72 | 71 | imp32 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  →  ( ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) ) | 
						
							| 73 | 72 | impl | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  →  ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 𝑦 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) ) | 
						
							| 75 | 44 74 | mpd | ⊢ ( ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  →  ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) )  =  𝑈 ) | 
						
							| 76 | 28 75 | eqtr3d | ⊢ ( ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  →  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) | 
						
							| 77 | 76 | ex | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) | 
						
							| 78 | 77 | ancld | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 79 | 78 | reximdva | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 80 | 15 79 | mpd | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝑈  ∈  𝑋 )  ∧  ( 𝜑  ∧  𝜓 ) )  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) |