| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
grpidinvlem3.2 |
⊢ ( 𝜑 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
| 3 |
|
grpidinvlem3.3 |
⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ) |
| 4 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 𝐺 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) |
| 5 |
4
|
eqeq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
| 6 |
5
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
| 7 |
6
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
| 8 |
3 7
|
bitri |
⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 11 |
10
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 12 |
11
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 13 |
8 12
|
sylanb |
⊢ ( ( 𝜓 ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 14 |
13
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 15 |
14
|
adantll |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
| 16 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 17 |
16
|
3expa |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 18 |
17
|
adantllr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 19 |
18
|
adantllr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 20 |
2
|
biimpi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
| 21 |
20
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
| 23 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) ) |
| 24 |
|
id |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → 𝑥 = ( 𝐴 𝐺 𝑦 ) ) |
| 25 |
23 24
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) |
| 26 |
25
|
rspcva |
⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 27 |
19 22 26
|
syl2anc |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 29 |
|
pm3.22 |
⊢ ( ( ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐺 ∈ GrpOp ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 30 |
29
|
an31s |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 31 |
30
|
adantllr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 32 |
31
|
adantllr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 𝑦 ) ) |
| 35 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 36 |
34 35
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑦 ) = 𝑦 ) ) |
| 37 |
36
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 38 |
2 37
|
sylanb |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 40 |
39
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 41 |
40
|
adantlll |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
| 42 |
41
|
anim1i |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝑈 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
| 43 |
1
|
grpoidinvlem2 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 44 |
33 42 43
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
| 45 |
16
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 46 |
45
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
| 47 |
|
oveq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝐺 𝑥 ) = ( 𝑤 𝐺 𝑥 ) ) |
| 48 |
47
|
eqeq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑤 𝐺 𝑥 ) = 𝑈 ) ) |
| 49 |
48
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
| 50 |
49
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
| 51 |
3 50
|
bitri |
⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
| 52 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( 𝑤 𝐺 𝑥 ) = ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) ) |
| 53 |
52
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ( 𝑤 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
| 54 |
53
|
rexbidv |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
| 55 |
54
|
rspcva |
⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 56 |
51 55
|
sylan2b |
⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ 𝜓 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 57 |
|
anass |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ↔ ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
| 58 |
57
|
biimpi |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
| 59 |
58
|
an32s |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
| 60 |
59
|
ex |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
| 61 |
45 60
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
| 62 |
61
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
| 63 |
62
|
imp |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
| 64 |
1
|
grpoidinvlem1 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ∧ ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ∧ ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 65 |
63 64
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ∧ ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 66 |
65
|
exp43 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝑤 ∈ 𝑋 → ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) |
| 67 |
66
|
rexlimdv |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
| 68 |
56 67
|
syl5 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ 𝜓 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
| 69 |
46 68
|
mpand |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝜓 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
| 70 |
69
|
exp32 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) → ( 𝜑 → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝜓 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) ) |
| 71 |
70
|
com34 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) → ( 𝜑 → ( 𝜓 → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) ) |
| 72 |
71
|
imp32 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
| 73 |
72
|
impl |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
| 75 |
44 74
|
mpd |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
| 76 |
28 75
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝐴 𝐺 𝑦 ) = 𝑈 ) |
| 77 |
76
|
ex |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |
| 78 |
77
|
ancld |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 79 |
78
|
reximdva |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
| 80 |
15 79
|
mpd |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |