Step |
Hyp |
Ref |
Expression |
1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpidinvlem3.2 |
⊢ ( 𝜑 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
3 |
|
grpidinvlem3.3 |
⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ) |
4 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 𝐺 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
6 |
5
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
8 |
3 7
|
bitri |
⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
12 |
11
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
13 |
8 12
|
sylanb |
⊢ ( ( 𝜓 ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
15 |
14
|
adantll |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
16 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
17 |
16
|
3expa |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
18 |
17
|
adantllr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
19 |
18
|
adantllr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
20 |
2
|
biimpi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
21 |
20
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) |
23 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) ) |
24 |
|
id |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → 𝑥 = ( 𝐴 𝐺 𝑦 ) ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) |
26 |
25
|
rspcva |
⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
27 |
19 22 26
|
syl2anc |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
29 |
|
pm3.22 |
⊢ ( ( ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐺 ∈ GrpOp ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
30 |
29
|
an31s |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
31 |
30
|
adantllr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
32 |
31
|
adantllr |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) |
34 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 𝑦 ) ) |
35 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
36 |
34 35
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑦 ) = 𝑦 ) ) |
37 |
36
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
38 |
2 37
|
sylanb |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
40 |
39
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
41 |
40
|
adantlll |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐺 𝑦 ) = 𝑦 ) |
42 |
41
|
anim1i |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝑈 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
43 |
1
|
grpoidinvlem2 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( ( 𝑈 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
44 |
33 42 43
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) |
45 |
16
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
46 |
45
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) |
47 |
|
oveq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝐺 𝑥 ) = ( 𝑤 𝐺 𝑥 ) ) |
48 |
47
|
eqeq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑤 𝐺 𝑥 ) = 𝑈 ) ) |
49 |
48
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
50 |
49
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ 𝑋 ( 𝑧 𝐺 𝑥 ) = 𝑈 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
51 |
3 50
|
bitri |
⊢ ( 𝜓 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) |
52 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( 𝑤 𝐺 𝑥 ) = ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) ) |
53 |
52
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ( 𝑤 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
54 |
53
|
rexbidv |
⊢ ( 𝑥 = ( 𝐴 𝐺 𝑦 ) → ( ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ↔ ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
55 |
54
|
rspcva |
⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 𝑥 ) = 𝑈 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
56 |
51 55
|
sylan2b |
⊢ ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ 𝜓 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
57 |
|
anass |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ↔ ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
58 |
57
|
biimpi |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
59 |
58
|
an32s |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
60 |
59
|
ex |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
61 |
45 60
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
62 |
61
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝑤 ∈ 𝑋 → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) ) |
63 |
62
|
imp |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ) |
64 |
1
|
grpoidinvlem1 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ) ) ∧ ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ∧ ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
65 |
63 64
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) ∧ 𝑤 ∈ 𝑋 ) ∧ ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ∧ ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) ) ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
66 |
65
|
exp43 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝑤 ∈ 𝑋 → ( ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) |
67 |
66
|
rexlimdv |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( ∃ 𝑤 ∈ 𝑋 ( 𝑤 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
68 |
56 67
|
syl5 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝑦 ) ∈ 𝑋 ∧ 𝜓 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
69 |
46 68
|
mpand |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) → ( 𝜓 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
70 |
69
|
exp32 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) → ( 𝜑 → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝜓 → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) ) |
71 |
70
|
com34 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) → ( 𝜑 → ( 𝜓 → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) ) ) |
72 |
71
|
imp32 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) ) |
73 |
72
|
impl |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
74 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( ( 𝐴 𝐺 𝑦 ) 𝐺 ( 𝐴 𝐺 𝑦 ) ) = ( 𝐴 𝐺 𝑦 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) ) |
75 |
44 74
|
mpd |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝑈 𝐺 ( 𝐴 𝐺 𝑦 ) ) = 𝑈 ) |
76 |
28 75
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( 𝐴 𝐺 𝑦 ) = 𝑈 ) |
77 |
76
|
ex |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |
78 |
77
|
ancld |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
79 |
78
|
reximdva |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
80 |
15 79
|
mpd |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |