| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpfo.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝐺  ∈  GrpOp ) | 
						
							| 3 |  | simplr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  𝑋 ) | 
						
							| 5 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝑦  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 )  =  ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) ) ) | 
						
							| 6 | 2 3 4 3 5 | syl13anc | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 )  =  ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) )  =  ( 𝐴 𝐺 𝑈 ) ) | 
						
							| 8 | 6 7 | sylan9eq | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  →  ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 )  =  ( 𝐴 𝐺 𝑈 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( ( 𝐴 𝐺 𝑦 )  =  𝑈  →  ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 )  =  ( 𝑈 𝐺 𝐴 ) ) | 
						
							| 10 | 8 9 | sylan9req | ⊢ ( ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑦 𝐺 𝐴 )  =  𝑈 )  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  →  ( 𝐴 𝐺 𝑈 )  =  ( 𝑈 𝐺 𝐴 ) ) | 
						
							| 11 | 10 | anasss | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) )  →  ( 𝐴 𝐺 𝑈 )  =  ( 𝑈 𝐺 𝐴 ) ) | 
						
							| 12 | 11 | r19.29an | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) )  →  ( 𝐴 𝐺 𝑈 )  =  ( 𝑈 𝐺 𝐴 ) ) |