| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpoidval.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpoidval.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 | 1 | gidval | ⊢ ( 𝐺  ∈  GrpOp  →  ( GId ‘ 𝐺 )  =  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 5 | 4 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 6 | 5 | rgenw | ⊢ ∀ 𝑢  ∈  𝑋 ( ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐺  ∈  GrpOp  →  ∀ 𝑢  ∈  𝑋 ( ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 8 | 1 | grpoidinv | ⊢ ( 𝐺  ∈  GrpOp  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) | 
						
							| 10 | 9 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) | 
						
							| 11 | 10 | reximi | ⊢ ( ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝑥 )  =  𝑢  ∧  ( 𝑥 𝐺 𝑦 )  =  𝑢 ) )  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) | 
						
							| 12 | 8 11 | syl | ⊢ ( 𝐺  ∈  GrpOp  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) | 
						
							| 13 | 1 | grpoideu | ⊢ ( 𝐺  ∈  GrpOp  →  ∃! 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) | 
						
							| 14 | 7 12 13 | 3jca | ⊢ ( 𝐺  ∈  GrpOp  →  ( ∀ 𝑢  ∈  𝑋 ( ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  ∧  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃! 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 15 |  | reupick2 | ⊢ ( ( ( ∀ 𝑢  ∈  𝑋 ( ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  →  ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  ∧  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ∧  ∃! 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  ∧  𝑢  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 16 | 14 15 | sylan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑢  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 17 | 16 | riotabidva | ⊢ ( 𝐺  ∈  GrpOp  →  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 )  =  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 18 | 3 17 | eqtr4d | ⊢ ( 𝐺  ∈  GrpOp  →  ( GId ‘ 𝐺 )  =  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) | 
						
							| 19 | 2 18 | eqtrid | ⊢ ( 𝐺  ∈  GrpOp  →  𝑈  =  ( ℩ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( 𝑢 𝐺 𝑥 )  =  𝑥 ) ) |