Step |
Hyp |
Ref |
Expression |
1 |
|
grpoidval.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpoidval.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
1
|
gidval |
⊢ ( 𝐺 ∈ GrpOp → ( GId ‘ 𝐺 ) = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
4 |
|
simpl |
⊢ ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
6 |
5
|
rgenw |
⊢ ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
8 |
1
|
grpoidinv |
⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) ) |
9 |
|
simpl |
⊢ ( ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
11 |
10
|
reximi |
⊢ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
12 |
8 11
|
syl |
⊢ ( 𝐺 ∈ GrpOp → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
13 |
1
|
grpoideu |
⊢ ( 𝐺 ∈ GrpOp → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
14 |
7 12 13
|
3jca |
⊢ ( 𝐺 ∈ GrpOp → ( ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
15 |
|
reupick2 |
⊢ ( ( ( ∀ 𝑢 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ 𝑢 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
16 |
14 15
|
sylan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
17 |
16
|
riotabidva |
⊢ ( 𝐺 ∈ GrpOp → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
18 |
3 17
|
eqtr4d |
⊢ ( 𝐺 ∈ GrpOp → ( GId ‘ 𝐺 ) = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |
19 |
2 18
|
eqtrid |
⊢ ( 𝐺 ∈ GrpOp → 𝑈 = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ) |