Metamath Proof Explorer


Theorem grpoidval

Description: Lemma for grpoidcl and others. (Contributed by NM, 5-Feb-2010) (Proof shortened by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = ( GId ‘ 𝐺 )
Assertion grpoidval ( 𝐺 ∈ GrpOp → 𝑈 = ( 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) )

Proof

Step Hyp Ref Expression
1 grpoidval.1 𝑋 = ran 𝐺
2 grpoidval.2 𝑈 = ( GId ‘ 𝐺 )
3 1 gidval ( 𝐺 ∈ GrpOp → ( GId ‘ 𝐺 ) = ( 𝑢𝑋𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) )
4 simpl ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 )
5 4 ralimi ( ∀ 𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 )
6 5 rgenw 𝑢𝑋 ( ∀ 𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 )
7 6 a1i ( 𝐺 ∈ GrpOp → ∀ 𝑢𝑋 ( ∀ 𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) )
8 1 grpoidinv ( 𝐺 ∈ GrpOp → ∃ 𝑢𝑋𝑥𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) )
9 simpl ( ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) )
10 9 ralimi ( ∀ 𝑥𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∀ 𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) )
11 10 reximi ( ∃ 𝑢𝑋𝑥𝑋 ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃ 𝑦𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑢 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑢 ) ) → ∃ 𝑢𝑋𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) )
12 8 11 syl ( 𝐺 ∈ GrpOp → ∃ 𝑢𝑋𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) )
13 1 grpoideu ( 𝐺 ∈ GrpOp → ∃! 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 )
14 7 12 13 3jca ( 𝐺 ∈ GrpOp → ( ∀ 𝑢𝑋 ( ∀ 𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ ∃ 𝑢𝑋𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃! 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) )
15 reupick2 ( ( ( ∀ 𝑢𝑋 ( ∀ 𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ ∃ 𝑢𝑋𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∃! 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) ∧ 𝑢𝑋 ) → ( ∀ 𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) )
16 14 15 sylan ( ( 𝐺 ∈ GrpOp ∧ 𝑢𝑋 ) → ( ∀ 𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ∀ 𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) )
17 16 riotabidva ( 𝐺 ∈ GrpOp → ( 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) = ( 𝑢𝑋𝑥𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) )
18 3 17 eqtr4d ( 𝐺 ∈ GrpOp → ( GId ‘ 𝐺 ) = ( 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) )
19 2 18 eqtrid ( 𝐺 ∈ GrpOp → 𝑈 = ( 𝑢𝑋𝑥𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) )